Glossary

The Royal Society
Phil. Trans. R. Soc. Lond. A 1997 355, 1709-1711
doi: 10.1098/rsta.1997.0088

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Glossary

A brief guide to the argot of Rydberg spectroscopy

autoionization decay of a semi-discrete level above the ionization limit into the ionization continuum

Beutler-Fano profile line shape for a transition to a semi-discrete state interacting with an overlapping continuum
bright states states to which transitions are allowed in a particular experiment
channel in scattering formulations of Rydberg states, there is a channel for each state of the core; each Rydberg state has multiple quantum defects, one corresponding to each channel
core the positive ion, relative to which a Rydberg electron occupies a (usually) large orbital
dark states states to which transitions are forbidden in a particular experiment, often those with high l
Edlén plot a plot of quantum defects of a Rydberg series, for an assumed IP, versus energy; the correct IP should give a limiting straight line at high ν
$f_{\nu l}(r), g_{\nu l}(r)$ regular and irregular radial wavefunctions for a Coulomb potential, where r is the electron-core distance; for bound levels, the combination $\cos \pi \nu f_{\nu l}(r)+$ $\sin \pi \nu g_{\nu l}(r)$ satisfies the boundary condition at $r \rightarrow \infty$
frame transformation orthogonal transformation between approximate descriptions of a Rydberg orbital at different electron-core distances r; for example, change from Hund's case (b) to case (d) angular momentum coupling with increasing r
half-collision a scattering formulation with no incoming channel
\boldsymbol{K}-matrix reaction matrix, occurring in the basis function $f_{i}(r)-\sum_{j} K_{i j}(r) g_{j}(r)$ for channel i
$\mathcal{L} \equiv l_{N} \quad$ the quantum number $\left(N-N^{+}\right)$, the projection of \boldsymbol{l} on the direction of \boldsymbol{N} or \boldsymbol{N}^{+}, which are essentially parallel for $l \ll N \approx N^{+}$
l-complex a group of states that correlate with a single value of l in the united atom
Lu-Fano plot a plot of multiple quantum defects (modulo 1) against each other; particularly useful in the analysis of perturbed Rydberg series
μ quantum defect $n-\nu$, often taken modulo 1 , also denoted δ; in multichannel treatments there is a (diagonal) quantum defect for each channel, and, more generally, there is a quantum defect matrix $\mu_{i j}=(1 / \pi) \tan ^{-1} K_{i j}$ with both diagonal and offdiagonal elements
$\nu \equiv n^{*} \quad$ effective principal quantum number
ν scaling for $\nu \gg l$, regular Coulomb-type radial functions behave as

$$
f_{\nu l}(r) \sim \frac{1}{\nu^{3 / 2}(2 l+1)!}\left(\frac{Z}{a_{0}}\right)^{1 / 2}\left(\frac{2 Z r}{a_{0}}\right)^{l+1}
$$

for $r \sim 0$; from the normalization factor, operators O with a short range in r (e.g. spin-orbit coupling or core-Rydberg interactions) have Rydberg-Rydberg matrix elements $\left\langle\nu^{\prime}\right| O|\nu\rangle$ proportional to $\left(\nu^{\prime} \nu\right)^{-3 / 2}$, and core-Rydberg matrix elements \langle core $| O|\nu\rangle$ proportional to $(\nu)^{-3 / 2}$
penetration significant amplitude of a Rydberg orbital within the core

+ superscript used for quantum numbers and parameters of the core
precursor an orbital of the core with a similar angular distribution, such as the same united-atom l and λ, as the Rydberg orbital under study; the presence of an occupied precursor orbital raises the energy of the Rydberg orbital
recombination usually refers to electron capture by an ion X^{+}to produce (initially) Rydberg states of the neutral species X
Rydberg ($R y$) term unit, such that the ionization potential of an orbital (in wavenumber units) is $\mathrm{IP}=Z^{2} R y / \nu^{2}$, where Z is the charge number of the core and ν is the effective principal quantum number; $R y$ depends on the core mass M^{+}according to $R y=\left(1+m_{\mathrm{e}} / M^{+}\right)^{-1} R y_{\infty}$, where $h c R y_{\infty}=\frac{1}{2} E_{\mathrm{h}}$, and E_{h} is the atomic unit of energy (the hartree); ab initio calculations are usually for infinite core mass
Rydberg orbital a large (or diffuse) atomic or molecular orbital that is largely separable from the orbitals of the core
Rydberg series a series of levels or transitions of the same character (e.g. the same $l \lambda$), with near-integer separations between successive values of ν
Rydbergization the transformation of a valence molecular orbital at longer internuclear distances to a united-atom Rydberg orbital at shorter internuclear distances $\mathcal{S} \equiv s_{J}$ the quantum number $(J-N)$, the projection of s on the direction of \boldsymbol{J} or N, which are esentially parallel for $s \ll J \approx N$
supercomplex a set of l-complexes that interact with each other, such as interacting s and d complexes

2. Abbreviations

BO Born-Oppenheimer
CI conical intersection; configuration interaction
DR dissociative recombination; double resonance
IC internal conversion
IP ionization potential
IR infrared
JT Jahn-Teller
MATI mass-analysed threshold ionization
MPI multiphoton ionization
MQDT multi-channel quantum defect theory

OODR optical-optical double resonance
PES photoelectron spectroscopy; potential energy surface
PFI pulsed field ionization
PTS photofragment translational spectroscopy
QDT quantum defect theory
REMPI resonance-enhanced multiphoton ionization; the numbers of photons are given by a notation $(M+N)$, where the resonance occurs at M photons and the ionization at N more photons; if two frequencies are used, one is denoted by a prime, etc.; thus $(2+1)$ one-colour REMPI or ($3+1^{\prime}$) two-colour REMPI
SEP stimulated emission pumping, involving PUMP and DUMP lasers
TKER total kinetic energy release
TOF time of flight
UV ultraviolet
VUV vacuum ultraviolet, typically $1200 \leqslant \lambda \leqslant 2000 \AA$
XUV extreme ultraviolet, typically $500 \leqslant \lambda \leqslant 1200 \AA$
ZEKE zero electron kinetic energy

